The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice.

نویسندگان

  • Hongfang Jia
  • Hongyan Ren
  • Mian Gu
  • Jianning Zhao
  • Shubin Sun
  • Xiao Zhang
  • Jieyu Chen
  • Ping Wu
  • Guohua Xu
چکیده

Plant phosphate transporters (PTs) are active in the uptake of inorganic phosphate (Pi) from the soil and its translocation within the plant. Here, we report on the biological properties and physiological roles of OsPht1;8 (OsPT8), one of the PTs belonging to the Pht1 family in rice (Oryza sativa). Expression of a β-glucuronidase and green fluorescent protein reporter gene driven by the OsPT8 promoter showed that OsPT8 is expressed in various tissue organs from roots to seeds independent of Pi supply. OsPT8 was able to complement a yeast Pi-uptake mutant and increase Pi accumulation of Xenopus laevis oocytes when supplied with micromolar (33)Pi concentrations at their external solution, indicating that it has a high affinity for Pi transport. Overexpression of OsPT8 resulted in excessive Pi in both roots and shoots and Pi toxic symptoms under the high-Pi supply condition. In contrast, knockdown of OsPT8 by RNA interference decreased Pi uptake and plant growth under both high- and low-Pi conditions. Moreover, OsPT8 suppression resulted in an increase of phosphorus content in the panicle axis and in a decrease of phosphorus content in unfilled grain hulls, accompanied by lower seed-setting rate. Altogether, our data suggest that OsPT8 is involved in Pi homeostasis in rice and is critical for plant growth and development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Phosphate Transporter Gene OsPht1;4 Is Involved in Phosphate Homeostasis in Rice

A total of 13 phosphate transporters in rice (Oryza sative) have been identified as belonging to the Pht1 family, which mediates inorganic phosphate (Pi) uptake and transport. We report the biological property and physiological role of OsPht1;4 (OsPT4). Overexpressing OsPT4 resulted in significant higher Pi accumulation in roots, straw and brown rice, and suppression of OsPT4 caused decreased P...

متن کامل

Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice.

Arsenic (As) accumulation in rice (Oryza sativa) may pose a significant health risk to consumers. Plants take up different As species using various pathways. Here, we investigated the contribution of the phosphate (Pi) transport pathway to As accumulation in rice grown hydroponically or under flooded soil conditions. In hydroponic experiments, a rice mutant defective in OsPHF1 (for phosphate tr...

متن کامل

Bioinformatics Comparison of Codon Usage of Genes Encoding Phosphate Transporter in Terms of Salt Tolerance, Day Length, Temperature and Pollination in Different Plants

In order to study and compare the phosphate transporter gene codon usage and it's respond to the traits like salt tolerance, day length, Pollination and temperature in different plants, 100 isoform from 10 plants are extracted from NCBI website and then analyzed with Gene Infinity and Minitab 16 software. The result shows that the highest codon usage similarity (81.95%) was for wheat a...

متن کامل

Bioinformatics Comparison of Codon Usage of Genes Encoding Phosphate Transporter in Terms of Salt Tolerance, Day Length, Temperature and Pollination in Different Plants

In order to study and compare the phosphate transporter gene codon usage and it's respond to the traits like salt tolerance, day length, Pollination and temperature in different plants, 100 isoform from 10 plants are extracted from NCBI website and then analyzed with Gene Infinity and Minitab 16 software. The result shows that the highest codon usage similarity (81.95%) was for wheat a...

متن کامل

Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice.

To maintain a stable cytosol phosphate (Pi) concentration, plant cells store Pi in their vacuoles. When the Pi concentration in the cytosol decreases, Pi is exported from the vacuole into the cytosol. This export is mediated by Pi transporters on the tonoplast. In this study, we demonstrate that SYG1, PHO81, and XPR1 (SPX)-Major Facility Superfamily (MFS) proteins have a similar structure with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 156 3  شماره 

صفحات  -

تاریخ انتشار 2011